
CLASS FIELD THEORY OF Q

This is addendum to Yihang’s note on CFT theory for the special case when the
base field K is the rational numbers Q. In this case, CFT boils down to the theory
of cyclotomic extensions which we will now review.

1. Cyclotomic extensions

Let F be a number field with ring of integers OF , N a positive integer and ζN a
primitive N th root of unity.. For a prime p of F , we denote by kp the reside field of
F at p, it is finite field and we let q = #kp where q is a power of the prime p ∈ Z.

The extension F (ζN )/F is Galois as it is the splitting field of XN − 1, and we
have an injection χN : Gal(F (ζN )/F ) ↪→ Z/NZ×, which takes an element σ to the
element m of Z/NZ× for which σ(ζN ) = ζmN , so that the extension is also abelian.

Proposition 1.1. 1) Let N be coprime to charp, then p is unramified in the ex-
tension F (ζN )/F .

2) χN (Frobp) = q
3) p decomposes into a product of r primes in F (ζN ) where r := [F (ζN ) : F ]/f

where f is the order of q in Z/NZ×.

Proof. 1) Let p′ be a prime of F (ζN ) above p and let Dp denote the decomposition
group at p. Then if ζN 7→ ζiN lies in the kernel of the map Dp → Gal(kp′/kp), then
ζiN − ζN ∈ p′.

However if f(X) is the polynomial f(X) = 1 +X + ...+XN−1, we have that

N−1∏
i=1

(1− ζi) = f(1) = N

and since N is coprime to p, we have that ζi − ζ ∈ p′ implies that i = 1.
2) Frobp ∈ Dp is characterised by the fact that it is mapped to the element

x 7→ xq in Gal(kp′/kp). Thus if ζN denotes the image of ζN mod p′, it follows that

Frobp(ζN ) = ζ
q

N

However the reduction 1, ζN , ..., ζ
N−1
N are all distinct modulo p, hence Frobp(ζN ) =

ζqN .
3) Since p is unramified in F (ζN ), it decomposes as q1...qr inOF (ζN ), and [F (ζN ) :

F ] = rf where f is the size of any residue extension [kqi : kp]. But f is just the
size of Gal(kp(ζN )/kp), which is cyclic and generated by Frobp, and hence is the
order of q in Z/NZ×. �

Define the fields

F cyc,p =
⋃

(N,p)=1

F (ζN )

F cyc =
⋃
N

F (ζN )
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If we take inverse limits of the homomorphism

χN : Gal(F (ζN )/F )→ Z/NZ×

over all integers (resp. integers coprime to p) we obtain homomorphisms

χpF : Gal(F cyc,p/F )→
∏
p′ 6=p

Zp′ := Ẑp

χF : Gal(F cyc/F )→ Ẑ

fitting into the commutative diagrams:

χpFGal(F
cyc,p/F ) ⊂ > Ẑp

lim
←(p,N)=1

Gal(F (ζN )/F )

|||
|||

⊂> lim
←(p,N)=1

Z/NZ×

|||
|||

χF : Gal(F cyc/F ) ⊂ > Ẑ

lim
←N

Gal(F (ζN )/F )

|||
|||

⊂> lim
←N

Z/NZ×

|||
|||

χF is called the cyclotomic character associated to the field F .
As F cyc,p is a subfield of F cyc, there is a natural projection

Gal(F cyc/F )→ Gal(F cyc,p/F )

which makes the following diagram commute:

χF : Gal(F cyc/F ) > Ẑ

χpF : Gal(F cyc,p/F )

∨∨
> Ẑp
∨∨

The previous proposition shows that χpF (Frobp) = q ∈ Ẑp.

2. Class field theory of Q

When F = Q, the Kronecker Weber theorem (which can be proved independently
of CFT) tells us that Qab = Qcyc, hence the class field theory of Q just follows from
cyclotomic theory. In the following, the prime ideal p is replaced with the rational
prime generated by p.

Theorem 2.1. (Class field theory of Q)

1) The injection χQ : Gal(Qab/Q)→ Ẑ is an isomorhism.

2) χpQ(Frobp) = p ∈ Ẑp.

Proof. We have already seen part 2) from the above remark. Part 1) follows im-
mediately from the irreducibiliy of cyclotomic polynomials, as this shows that χN
is an isomorphism for all N. �
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Our task now will be to translate the above into adelic language. It turns out the
the group idele of classes has a very explicit description and that what is defined
in Yihang’s notes as the global Artin map is essentially just the inverse of the
cyclotomic character χQ defined above.

Remark 2.2. Actually with our conventions χQ is the inverse of Art up to a sign.
This comes about because we chose Frobp to be the ”arithmetic Frobenius,” had
we instead chose it to be the ”geometric Frobenius” (which is just the inverse of
arithmetic Frobenius) the signs would work out. This sort of sign discrepancy
occurs regularly in the literature so I chose this convention just to point it out.

3. Adelic reformulation

We refer to Yihang’s notes for the definition of the ring of adeles AF and the
group of ideles A∗F . Our first aim will to prove that A∗Q is naturally isomorphic to

the direct product Ẑ∗ ×Q∗ × R∗>0.
Recall that AQ defined to be the restricted direct product over all places of Q of

the completions of Q at each place, with respect to the compact open subgroups
Zp at each finite place. It is straightforward to show that A∗Q is then naturally the
restricted direct product of the of the completions Q∗v at all places of v of Q with
respect to the compact open subgroups Z∗p for all finite places p.

Conceretely an element of A∗Q consists of a sequence (xv)v where v runs over
places of Q, such that for almost all finite places v corresponding to a prime p,
xv ∈ Z∗p. The only places v of Q are either finite, so corresponds to a prime p,
or the embedding ∞ : Q → R. Thus an element of A∗Q can be considered as pair
((xp)p prime, x∞) where xp ∈ Q∗p, and xp ∈ Z∗p for almost all p and x∞ ∈ R∗.

This gives a natural decomposition

A∗Q = Af∗Q × R∗

where Af∗Q is the group of finite ideles given by the restricted direct product over
all Q∗p with respect to the compact open subgroups Z∗p.

By the chinese remainder theorem Ẑ decomposes as the product Ẑ =
∏
p Zp, and

hence there is a natural inclusion

Ẑ∗ ↪→ A∗Q
We thus have three natural subgroups of A∗Q:

Q∗ ↪→ A∗Q, x 7→ (x, x)

Ẑ∗ ↪→ A∗Q, u 7→ (u, 1)

R>0∗ ↪→ A∗Q, y 7→ (1, y)

Since the group A∗Q is abelian it suffices to show that any element of A∗Q can be
written uniquel as a product of images of elements under the above embeddings.

Given ((xp)p, x∞), consider the element x = ±pvp(xp) ∈ Q, where the sign of x
matches x∞ (this uses the fact that Z is PID). Then multiplying by x−1, we see
the element ((x−1xp)p, x

−1x∞), satisfies vp(x
−1xp) = 0 and x−1x∞ > 0. Therefore

(x−1xp)p ∈ Z∗p and x−1x∞ ∈ R∗>0. This gives us the decomposition ((xp)p, x∞) =
xuy as above and it is clearly unique.

We thus obtain Q∗\A∗Q ∼= Ẑ∗ × R∗>0.
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Now we can define a map

ArtQ : Q∗\A∗Q → Gal(Qab/Q)

to be given by the composition

ArtQ : Q∗\A∗Q > Ẑ∗ × R∗>0 >> Ẑ∗
χ−1
Q
> Gal(Qab/Q)

The adelic version of class field theory can then be stated as

Theorem 3.1. 1) There exists a unique continuous homomorphism ArtQ : Q∗\A∗Q →
Gal(Qab/Q) satisfying the follow properties:

i) Let $ ∈ A∗Q denote the element $ = (1, ..., p, ..., 1) where the p occurs in the

pth component. Then ArtQ($)|Qcyc,p = Frob−1p

ii) The restriction of ArtQ to R∗ under the natural map R ↪→ Q∗\A∗Q is trivial
on R∗>0 and takes −1 to complex conjugation.

2) ArtQ induces an isomorphism Q∗\A∗Q/R∗>0
∼= Gal(Qab/Q)

Proof. Everything apart from uniqueness of ArtQ is immediate from above. The
proof of uniqueness is not worth mentioning here.

As a sanity check, let’s trace through the proof of property i) in the above. We
may multpily the element $ by p−1 ∈ Q to obtain the element (p−1, ..., 1, ...p−1)

which lies in Ẑ∗ since p is invertible in Z′p for p′ 6= p. Let N be coprime to p, then
we have the diagram:

Ẑ∗
χ−1
Q
> Gal(Qab/Q)

Z/NZ×
∨∨

χN
−1

> Gal(Q(ζN/Q))

∨∨

The image of $ in Z/NZ× is then just p−1 and so corresponds to Frob−1p under
χN . Taking the limit over N coprime to p we obtain the result. This point also
explains the source of the sign discrepancy with the usual definition. �

Thus in the case of Q, the Artin map really is completely explicit. From this
description we can deduce the result that we needed in lectures, namely that if
x = ((xp)p, x∞) was an idele such that xp ≡ 1mod N , and r was the integer such
that r = ±pvp(xp) and sgn r = sgn x∞, then ArtQ(x)(ζN ) = ζ−rN (note the sign
discrepancy).

For p dividing r we let $p denote the element of (1, ..., p, ..., 1) ∈ A∗Q. Then

let ω =
∏
p|r$

vp(r)
p sgn r. It follows from property i) and ii) of the Theorem that

Art(ω) acts on ζN via ζN 7→ ζrN .

Now ω−1x ∈ Ẑ∗ × R∗>0 and its projection to Z/NZ× is 1 by the assumption
xp ≡ 1mod N . There ω−1x acts trivially on ζN and so x acts via ζN 7→ ζN .


